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ABSTRACT

The Naval Postgraduate School mixed layer model is augmented to include an
entrainment zone with finite thickness. The role of entrainment shear production of
turbulent kinetic energy is investigated by comparing model results that include the new
entrainment zone with observations at Ocean Weather Station Papa in the North Pacific

and with model predictions that do not include the new entrainment zone feature. Al-
though it is not yet clear that annual-period model forecasts are improved significantly,
it is shown that the entrainment zone processes play a significant role in vertical fluxes
and in the turbulent kinetic energ) budget of the upper ocean under warming conditions.
Furthermore. it is found that the improved entrainment zone more accurately reproduces
the temperature gradients of transient thermoclines observed at OWS Papa.
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I. INTRODUCTION

A. PURPOSE
The purpose of this study is to investigate possible improvements in the Naval

Postgraduate School oceanic mixed layer model, which is used in prediction of the upper
ocean thermal structure, by including a finite-thickness entrainment shear production
zone at the base of the mixed layer and allowing entrainment mixing to occur below the
well-mixed surface layer.

B. BACKGROUND

In this study the oceanic mixed layer is considered to oe a fully turbulent region
bounded above by the air-sea interface and below by a dynamically stable water-mass.
The surface layer is assumed to be homogeneous in temperature and salinity and to have
nearly uniform horizontal currents, except for domains of large shear near the surface
and in the entrainment zone. The upper shear zone is forced by surface buoyancy flux,
wind-driven shear production of turbulence, and wind-driven wave action, while the

lower is characterized by entrainment of non-turbulent dense water from below, This
lower zone is the region of interest for our study. The general features of this three-layer
model are presented in Figure 1 on page 2.

As pointed out by Gaspar (1988), the vertical forcing of surface heat and momen-
tum fluxes dominates the physics of the upper ocean. Consequently. the mixed layer can
be reasonably treated as a bulk layer (often referred to as a slab) where all horizontal
gradients are regarded as negligible. Kraus m] Turner (1967) intioduced the first
oceanic one-dimensional bulk model by vertically integrating the total turbulent kinetic
energy equation over the depth of the layer. Other bulk models have since been intro-
duced which are based on the same principal assumptions as the Kraus and Turner
model, but they differ in their methods of parameterizing the physical processes
associated with the mixed layer. The Naval Postgraduate School (NPS) model is a
numerical solution to the Garwood (1977) model which was the first bulk model to
formulate the turbulent kinetic energy budget into three separate components, using
bulk second-order closure to solve for the vertical averages of these components.
Reviews of various bulk models and their parameterizations are provided by
Zilitinkevich et al. (1979) and Garwood (1979).
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Figure 1. The NPS Model: Treatment of physical processes as shown for a typ-

ical temperature profile of the upper ocean.

The capability of bulk models to simulate evolutions of the mixed layer has been

demonstrated by several authors, including Martin (1985) and Gaspar (1988). Although

second order turbulence closure models that compute the vertical profiles of the turbu-

lent kinetic energy have also been introduced (eg., Mellor and Durbin 1975), the bulk

models yield comparable results and are computationally more efficient.

Like several other nixed layer models, earlier versions of the NPS (Garwood 1977)

model have been evaluated against data collected at ocean weather stations. A review

of several of these investigations is provided by Martin (1985). This study will use data

gathered at Ocean Station Papa which was in operation in the eastern North Pacific

between 1949 and 1981.
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Station Papa was occupied alternately by two vessels operated by the Marine

Services Branch of the Canadian Ministry of Transport. Observations at the station

consist of frequent subsurface bathythermograph (BT) casts and three-hourly surface

meteorological measurements. The meteorological data include dry and wet-bulb tem-

perature, sea surface temperature (SST), wind speed and direction, and fractional cloud

cover in octals. The BT casts were conducted at intervals varying between twenty min-

utes and several days and yielded vertical temperature profiles that were digitized at five

meter intervals. All measurements were confined to the region between latitudes 490 N

and 510 N and longitudes 1440 W and 1460 W.

Detailed descriptions of oceanic and atmospheric conditions at Station Papa are

provided in Tabata (1961 and 1965). The horizontal currents are weak in this region.

Additionally, ad ection by upwelling is insignificant in comparison to horizontal

advection. These characteristics make this location ideally suited for testing one-

dimensional mixed layer models.

All previous tests of the NPS model at Papa have used numerical versions that

neglected entrainment shear production and assumed the entrainment zone to be

infinitesimally thin. These models did not allow the entrainment zone to have a thick-

ness, 6, greater than the model grid size (Az = I m). One of these versions of the model

was evaluated by Martin (1985) for annual simulations of mixed layer depth evolution

and SST changes. Martin suggested that the model might be further improved for op-

erational use if it included entrainment shear production along with the momentum

budget nessecary to include this process.

De Szoeke and Rhines (1976) and Garwood and Yun (1979) suggsted that in most

circumstances the production of turbulent kinetic energy by entrainment shear pio-

duction is negligible. Recent research, however, indicates that the process may actually

be significant. Garwood (1987) has shown that to the first order, the entrainment zone

thickness, 6, is independent of the surface buoyancy flux and is dependent largely on the

Coriolis parameter and the surface wind stress. Furthermore, the intensity of turbulence

and mixing in the entrainment zone is not dependent upon the Richardson number when

the layer is at the critical value (Ri,,- I). Rather, Garwood et al. (1989) have shown
4

that the intensity of' mixing in the entrainment zone can be mostly controlled by the

fluxes of energy from above.
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C. APPROACH

This study will investigate the significance of the entrainment shear production

process in predictions of upper oceanic features, particularly sea surface temperature.

Conclusions will primarily be sought by evaluating two versions of the NPS model

against Station Papa data. One version will include a formulation for the process, and

the other version will neglect it. A comparison of the model results will then be pre-

sented. Additionally, the time and depth dependence of the entrainment shear pro-

duction process will be demonstrated theoretically by following the method of de Szockc

and Rhines (1976). The evalua:ion procedure will be preceded by a review of the gov-

erning equations and a presentation of the NPS model, highlighting features neglected

in other studies.

4
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II. THEORY

A. GOVERNING EQUATIONS

As presented in Garwood (1977), the NPS model is based on the Navier-Stokes
equations of motion without geostrophic components, the first law of thermodynamics,

the conservation of salt mass, the continuity equation for incompressible water, and an
equation of state based on temperature and salinity. It assumes that the turbulent kinetic

energy of the overlying mixed layer is transformed into potential energy as the lower

water-mass is destabilized and entrained into the upper layer. Applying these assump-

tions, the model uses exchanges of heat. salt, and momentum to estimate changes in the

heat content and turbulence of the mixed layer. This estimate is then used to compute
a change in temperature and a corresponding deepening or shallowing rate of the mixed

layer.

This presentation of the model will employ rectangular coordinate axes with x

positive to the east, y positive to the north, and z positive upward originating at the

ocean surface. Likewise, the eastward, northward, and upward components of velocity

will be represented as it, v, and iv, respectively.

Momentum is assumed to be imparted only by wind forcing. The existence of a

horizontal pressure gradient is assumed to have no effect on vertical shear for creation
of turbulent kinetic energy and is neglected. Consequently, wind stress components,

T, and , determine the values of the horizontal friction velocity:

U. = [(Tx/p) + (Tyfp) 2],14  (1)

where p denotes the density of sea water.

Surface salinity flux is due to net evaporation minus precipitation (e-p):

s'w'(0) = - S(e - p) (2)

where an overbar or an upper case letter denotes a vertical mean quantity and a prime

represents a turbulent or fluctuating quantity. This notation follows the convention of

representing a given variable x as: x = X + x' , where the mean across the mixed layer h

is defined:

5



X=-- Jx(z)dz.

Heat fluxes are defined by the following equation:

Qo = QS - QB - QH- QE (3)

where Q, is net downward heat flux, Q$ downward solar radiation, Q, upward back ra-

diation, QH upward sensible heat flux, and QE upward evaporative heat flux. A complete

description of how these fluxes are determined for the model is provided by Garwood

(1976), and an analysis of the parameterization of the absorption of solar radiation in

the upper ocean is provided by Gallacher et al. (1983).

The unique aspects of the NPS model are manifested in its method of computing

the rate of deepening or shallowing of the mixed layer. Of particular note, is the treat-

ment of dissipation in a three-component sense. To introduce this feature of the model,

it is best to begin with a brief disscussion of the model equations. A detailed description

of the model is provided by Garwood (1976 and 1977).

B. MODEL EQUATIONS
Essential to the solution of this model is an accurate assessment of the entrainment

velocity, w,. Letting:

Ch
7-= we - II( -h). (4)CI

For Ocean Station Papa it is assumed that the mean vertical motion is negligible or
IV( -h) = 0. Thus the equation becomes:

et We" (5)

The entrainment velocity is found by solving

E( t' ) (6)
we - lgh(caA T - f AS) + El (6)

where g is the acceleration of gravity, a and fl the thermal and saline expansion coeffi-

cients, and E= u'2 + V'2 + w'2. The variables AS and AT denote the change in mean
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salinity and temperature across the entrainment zone and are obtained using the jump

condition. The principal assumption being applied is that the mixed layer is approxi-

mately homogeneous in the mean properties of T and S., Often the effects of variations

in heat and salinity are combined into a single buoyancy term, b. Thus the mean

buoyancy jump across the entrainment zone 6 can be expressed as:

AB = B( -h) - B( -h - 6).

Similarly, the jump condition is applied to momentum, and the changes in the mean

components of velocity arc:

AU= U(-) - U( -h -6) and AV= V(-h) - V( -h - 6).

The most distinguishing feature of the NPS model is its use of three component

equations to define total kinetic energy (TKE) or L. The TKE equations, assuming

horizontal homogeneity are:

T,72 . /21 Pufu~\

7 ,7 1 ,ye L IL ) + i 4 V ) 2 ( b )

, _ 3 2 Lo +- 21 /j) 2] "77-., - ' k- - ,, k J 7¢)

where pressure and water density are represented by p and p, respectively. Other terms

appearing in these eqaations are those associated with the planetary rotation rate Q and

the Coriolis parameter f defined:

f= 2Q sin(,) where 4 represents the latitude.

It should be noted that when sumnting the contributions of these equations, all ex-

pressions associated with planetary rotation disappear. Thus the equations can be re-
duced to:

T1 2, C: 2 UjP X Lx~
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c-7w-7w a-' 2 C 2 + 2 ]

T2 2 L 2  PO 8v [OH

2 ! - a t-NI-- V + )2b- + (.~)21 (80)tz 2 )o-- PQz 2 15o .1 7. ay / e O3z

The boundary conditions at z = 0 and at z - h are:

- UIV' (0) = T o u'wv'( -h) = - rAu l
PO

Qo V+ P '( -h) = - 1-6 v

WO0) -gQ....o . ig(eoP) S  b,--v_) _a Oh

where F is a step function defined as r =0 for -L- < 0 and F = I for z h > 0.
Ct at

Garwood (1977) integrated the buoyancy equation and the momentum equations
across the mixed layer to obtain the following bulk TKE equations.

t(hw'2) (___l__)
t_ 2 n13  t, + 2 1.) (9a)

at -2n u, +(AU) we+Rx - T

9(w)_2m3 + (AjVJ + Ry - D (9b)

,(2h') T D
- - xgh -L- + PghS(e-p) - gh(o:AT-#AS)w% + R (9c)

New terms appearing in these equations are defined as follows. Viscous dissipation is

D = 2mn[(E)" ,2 + p3fh]E. Pressure redistribution is represented by R,, Rr, and Rz which
are defined as: R, = 2n2(E - 3u'2)E '2 ; R, = 2m2(E - 3v'2)D' 2 ; R, = 2m 2(E -3w'2) ;

2

The specific heat of sea water is denoted by cp . The terms m2 , , and P3 represent
dimensionless model constants used by Garwood to parameterize higher order processes
into a second order closure scheme (1977). A brief description of these constants is now

given as provided by Gallacher et al. (1983).

The in2 term establishes the vertical integral of the pressure redistribution as a lin-
ear proportionality of the distribution of TKE. It assumes that the pressure-strain rate

8



interaction tends to restore equal distribution of energy among the three components.

In other words, it assumes the turbulence returns to isotropy in agreement with the

theoretical work of Rotta (1951). The in, term represents the linear parameterization

of wind shear production of TKE as a function of surface wind stress and the horizontal

friction velocity defined in Equation 1. The combination of ni1 and P3 shown in the

viscous dissipation term is used to establish a parameterization of dissipation which in-

corporates a Rossby number for the mixed layer. This parameterization is another
unique feature of the model, since it allows dissipation to be calculated in each of the

three components and incorporates the combined effects of planetary rotation and the

turbulent velocity relative to the length scale of the large scale turbulent flow.

Following Garwood (1977), Equation (9) can be considered simply as the total
vertically integrated TKE being equal to the sum of the bulk quantities of wind shear

production, entrainment shear production, buoyant damping or production due to sur-

face buoyancy, buoyant damping due to entrainment, and viscous dissipation.

The TKE equation integrated across the entrainment zone provides the final

equation in the model. From Eq. (4) through (6) and assuming (IV = 0) , to deepening

of the mixed layer is

h flxi4  Eu
ha+ E (10)

The m4 term seen in this equation is a non-dimensional model constant that represents

the ratio of buoyancy flux to convergence of energy flux at the base of the miNed layer

(Garwood 1977).

Previous studies using the NPS model have assumed that entrainment shear pro-

duction is negligible. Consequently, their numerical simulations omitted the entrainment

shear production terms seen in Equations (9a) and (9b) ([(AU) 2 and (AV')jw,) and the

entrainment zone's TKE at the base of the layer shown in Equation (10). Omitting this

process in numerical versions of the Garwood model had been an acceptable practice,

since it facilitated computations of TKE without using the momentum equations. This

enabled the numerical models to operate more efficiently, and it was believed by

Garwood that any differences in the results were insignificant (Martin 1985).

In this investigation with the NPS model, the above processes will be included and

the entrainment zone will be treated as having a finite thickness 3. The thickness of the

entrainment zone is assumed to adjust so as to maintain stability whereby the product

9



of the Richardson number and the thickness of the zone (Ri6) is a constant equal to the

critical Richardson number (Garwood 1977). As shown in Figure 1, the Richardson

number within the region -h - 6 < z < -h is treated as the critical Richardson number

for neutral stability and is assigned a value of 14. The Richardson number is deter-

mined by the following relationship:

OT aSag _ fg "r'-
Ri= Ob))2 2 ' (1)

)2 + C (A[U)2 + (A
C: C

Using the assumed value of Ri = 1/4, 6 is then obtained as a function of the changes in

mean momentum and buoyancy across the entrainment zone:

6 [(AU) 2 + (A; )21(1/4) (12)
AB

This completes the presentation of the theoretical description of the NPS model.

Garwood (1976 and 1977) provides a more complete description of the theory, partic-
ularly regarding the basis of many of the applicable assumptions.

10



111. METHOD

A. RESPONSE TIME ANALYSIS
This study begins by investigating the theoretical time scale for which entriinncnt

shear production of TKE is significant. de Szoecke and Rhines (1976) suggested that the
most significant contributions made by entrainment shear production occur on a time

scale that extends from approximately I to 12 hours, peaking at about one half ao

inertial period at mid-latitudes after a given wind forcing event over an initially quiescent
body of water with a linear density stratification. Additionally, the contribution of

entrainment shear production was not shown to be a significant factor in mixed layer

dynamics. However. their study was conducted with the Niiler model (Niiler 1975).

The Niiler model differs from Garwood's model in two fundamental aspects. First,

it establishes mean TKE as a constant function of the surface wind stress, whereas the

NPS model computes values for mean TKE using the vertically integrated TKE

equations. Second, it restricts dissipation to the wind-induced energy at the surface,

rather than a more realistic estimation based on vertical and horizontal components of

the TKE budget. Because of these differences, it was worthwhile to attempt a reprod-

uction of the results obtained by de Szoeke and Rhines with the Niiler model and to

compare them with rcsults obtained by performing an identical experiment with the

Garwood model. Some of the parameters in these experiments were not necessarily as-

signed values identical to those used in their study, since their report did not discuss

them. However, reasonable values approximating mid-latitude oceanic conditions should

provide comparable results to those of de Szoeke and Rhines.

The two models were assigned identical initial conditions and simultaneously sub-

jected to wind forcing over a fluid initially at rest with a linear density stratification. It

was found that the Garwood model initially deepened the mixed layer more slowly than

the earlier model. The largest difference in calculated layer depth, h, occurred about 24

hours after commencement ofwind-forcing where the Garwood model computed a depth

that was three meters less than the depth calculated by the Niiler model. As the simu-

lation continued, the mixed layer depths estimated by the two models converged to

similar solutions. These results were not surprising, because the two models differ in

their formulation of TKE. I lowever, it was not yet clear how these differences would

affect the final result.

11



Forming ratios of terms used in the Njiler mode! equations, de Szocke and Rhines
obtained results which are illustrated in Figure 2 below.

5-

2. -

*0

o l"~ - ' : = -..E. .. .j x _ t

( I hr) (12 hrs)

l -see

Figure 2. Numnerical solution mlth Mliler model: Results obtained by de Szoeke

and Rhines. (Solid curve: wind induced energy flux less dissipation;

dashed curve: entrainment shecar production; dotted curve: niean "IKI-.)

The danshed curve plotted in Figure 2 represents the ratio of enitrainmient shear pro-

duction to entrainment damping as formulated by the Niiler model. As mentioned ear-

lier, entrainmnent shear production values are seen to provide the largest ielative

contribution I-) TKE between approximately I and 12 hours after initialization. Addi-

tionally, the ratio represented by the dashed curve in the figure never exceeds a value

of 1.
Following their example with the Niiler model, timie variant ratios of enitralinment

slhear production to entrainment damping were formed for both models, and outputs

fri'o the simulation mentioned above were evaluated. The Niiler model computations

indicated that the ratio of entrainmnt shecar production to entrainment damping was

don-diant from approximately 75 mrinutes to 9 hours after initiation of winid-foicing, and

the niaxinium value attained by this ratio was 0.62. These results are in geneial agree-

ment wvith the findings of de Szoeke and Rhines. Illowever, this was not the case For the

12



(3arwood model. Under identical initial and forcing conditions, entrainment Shearr pro-

d4uctionl donfinated the TK1E budget from 18 riinutes after initialiZation ll 6 Miu.t 12
hours later. Additionally, thc maximum value attained by the ratio was 1.52, which was
over twice the highest value computed by the Nijier model.

. rhe question arises as to wvhy these results difrcr. *rhe results are inheicently 1 elated

to thc diflierent deepening rates or the models. The iaio used for computing these values

fr-om thc Niilcr miodel was:

entrainmnent shear produlction 2f-2 1,d(1- cos(ri))
eiaoincent danipinigI

whicic /r, repi esents the rmixcd layer depth computed by the Niiler model. A complete
dcsci iption or the individual terms in the above expression is provided by Nilci ( 1975).
Similarly, the Gaiwood model's computation for the same ratio can be xlesscd cis:

Zr 21,d(1_ cos(r))

IV hi2 -b w'(0)t

* where h, is the layer depth calculated by the Garwood model.
For this particular simulation b'iw"(0) equaled zero, so the t'vo models performed

identical computation of this ratio. I lowever, since the models yielded different val-

e-s for1 mixed layer depth, their outputs differed by a factor of (h,1h,)4. 'I hie magnitude
of this Factor happened to be greatest duiing the first inertial period when shear pro-
dluction played its most active role. As an illustration, consider the following valucs ic-

wuined by the models two hours after initiating wind forcing.

Niler's ratio = 0.57 Garwood's iatio =1.25

h= 1143.2 cmnh 943.3 cmn

I hie zatio of the ruist two values (0.57/1.25) has a Value of 0.456, i~ich is equal to the

valIue of(h/ 1 )

I he appazcnt significance of entrainimn shear production is thus shown to vary

bctwcin these two models according to their differenices iii, compjuting the 'I K U' and in

* accountinig foi dissipation. Simcce the Garwood miodel uses a moic econipi eheniSive

pam ametem ization, these m esults suggest that enitraimmnient shear production plays a mnom
significant tole in the I K U budget than my have beeni predlicted by cam lie, ied layer

ii iodcl 5.
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Although de Szoeke and Rhiies (1976) suggested that this process is associated

with a particular time scale, it is noted that their study was restricted to a column of

water having a linear density stratification initially. A more accurate assessment of the

significance of entrainment shear production might be obtained by evaluating the proc-
ess with respect to mixed layer depth. The largest relative difference between the layer

depths predicted by the Garwood and Niiler models (h, - h2) occurred when the layer

was shallow, thus (hJh ')4 attained a high value. Additionally, the value oi h4 appears in

the denominator of the expressions used in our analysis, which creates an inverse re-

lationship between the mixed layer depth and the contribution of entrainment shear

production. These results suggest that the process of entrainment shear production is

most significant when the mixed layer is shallow, implying that simulations of the upper

ocean at Ocean Station Papa should be most affected by this mixing process in the

summer and early fall seasons. This investigation now continues with a series of tests

of the NPS model.

B. PRELIMINARY ADJUSTMENTS

The version of the NPS model including entrainment shear production used in this

study is in the developmental stage, and a few changes and corrections in its numerical

code were nec.ssary before proper testing could occur. Each coding change required

verification, and meant that all previous results were suspect. It is believed, however,

that the NPS model with entrainment shear production added received adequate testing

during the course of this investigation to render it suitable for future studies of air-sea

interaction or for embedding into general circulation models such as was done with an

earlier version by Adamec et al. (1981).

The NPS model with entrainment shear production is identical to the version

without entrainment shear production, except that it performs additional computations

to simulate this additional source of TKE within a zone of finite thickness below the well

mixed surface layer., Both versions were verified using Ocean Station Papa data ex-

tending from January 1,1961, to December 26, 1969. Each run was initialized with ar-

chived BT and bucket SST data. In each simulation, the temperature profile recorded

nearest in time to the simulated initiation time provided the initial conditions of the

thermal structure of the upper 200 meters of the ocean at Station Papa. To perform

operations with a vertical resolution of I m, the BT data were linearly interpolated be-

tween the temperature recordings at five meter intervals. A time step of 1 hr was used,
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and atmospheric forcing was computed and interpolated using thrce-hourly

meteorological observations and bulk flux formulas.

Model predictions were available at one hour intervals, but for investigating long
term simulations (seasonal and annual) it seemed adequate to use data output every

third hour. Model SST prediction was chosen as the primary variable for comparing

model performance against observed bucket SST. This had the advantage of simplifying
comparisons of large sets of data. Some difficulties arosc because of this choice, and
these will be discussed later.

Having interpolated the initial temperature profile to a resolution of I in, the NPS
model then computed successive temperature values for each grid point extending fi'om
the surface to a depth of 200 in. For initialization purposes, the mixed layer depth was
defined as the shallowest depth at which the temperature was 0.2 C less than the SST.
The details of the entrainment zone numerical scheme used in the NI'S model are pro-
vided by Adeniec et al. (19SI).

Since the original numerical version of the model had been modified to include

simulation of entrainment shear production, it was appropriate to verify the conserva-

tion of heat. For this purpose,

1 0 0 ., 200 1 T j

heat change= ±f QP(4IZ --- Qizd]0,--;(T-- s _6 - j=1

where the time variant heat content (Q) at each grid point in the water column is pro-

portional to the change in temperature at the appropriate level (), and initial and final

values are denoted by subscripts i and f, respectively. Choosing reasonable values for

model parameters, several 96 hour simulations were conducted with the new version of
the model. For each simulation, the above computation was performed, and typically

returned error values of less than 10-1C. These small values could be attributed to ma-

chine round-off errors, so it seemed reasonable to assume that the model was operating

within the constraints of conservation of heat and potential energy.

The earlier discussion regarding the theoretical time response of entrainment shear

production suggests that the contribution of this process should vary depending on the
depth of the mixed layer. This led to an examination of the seasonal performance of the

NPS model.

The version of the model without this additional process was integrated fbr 90 day

simulations corresponding to seasons from January to March, April to June, and so on
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for the period extending from January 1,1960, to December 30, 1968. These simulations

yielded three-hourly outputs which included model predictions (T ,j) and bucket obser-
vations (T.,) of SST. From these data seasonal values of root-mean-square (rms) error

were examined where this error was defined as:

rinS= 0 ~ Tmd-6 Tobs)?
1=1

New terms appearing in this expression are N, the number of three-hourly data points,
and.6 Tmo, and 6T., defined as the difference between instantaneous and mean values of

model and observed SST, respectively. It appeared that the performance of this version

of the model was best in the January to March time-frame and poorest in the October

to December period. Typical rms error values for the winter season were appoximately

0.2 0. while those for tile Fall season were 0.7 0 with a variability of about + 0.16 0

for each.

Before concluding that these results were significant and that model performance

could be categorized by season, it was noted that the iwsults were influenced significantly

by the particular day selected for model initialization. For example, choosing to start a

90 day simulation on September 28. 1966, versus September 29, 1966, yielded error re-

sults that w,.re significantly different as illustrated below:

* From 28 September: mean error = 1.105 C and rms error = 0.558 P,

* From 29 September: mean error = 0.933 C and rms error = 0.435 0

where mean error was defined as the average of the difference (7,,d - 7' ) of tile three-

hourly outputs for the simulation. Thus the "seasonal" performance of the model could

possibly be attributed to this sensitivity to initialization time. Earlier research by

Warrenfeltz (1980) examined the sensitivity of this model to changes in intitial condi-

tions and noted, in particular, significant differences in results for 15 day simulations

initiated with different conditions during the fall deepening of the mixed layer. Thus it

seemed that this approach to evaluating the seasonal performance of the model would

not yield statistically significant results.

At this point a different method of studying the long term effects of entrainment

shear production was adopted. The length of model simulations was extended to 360
days, and model initialization was fixed at 1 January for each year. Initializing the
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model in the winter was preferred, since tile mixed layer was deep and not in transition.
Additionally, it facilitated making general observations of inter-annual variability and
comparing model results with previous studies such as Martin (1985) and Gaspar (1988).

The seasonal characteristics of model performance could be exalnined for tendencies to
degrade or improve with time based on cumulative errors brought forward from a pre-

vious season,

C. TUNING THE MODEL
Before obtaining meaningful -esults from simulations with the NPS model, some

criteria needed to be established for se:ecting values of the non-dimensional model con-

stants (eg., "n3, P3) mentioned in Equation 9 and its subsequent discussion. Although
these constants should theoretically be universal in their applicability, the assumptions

used in developing this second order closure one-dimensional bulk model have neces-

sarily neglected a complete description of the physical processes involved in the dynam-

ics of the upper ocean. As shown by Gallacher et al. (1983), the values assigned to somc
of these constants have varied considerably in previous studies.

Since this investigation would mainly use SST errors as the criteria for comparing

model results, it was decided to tune the models by seeking an optimal combination of

model constants for reducing SST error. The NPS model without entrainment shear
production had already been tuned to optimize its performance against data at Ocean
Station Papa for certain model simulations, but not specifically for SST prediction cor-

responding to a given year. Most model constants were assigned values that had been
found acceptable in previous studies. These included the following: nil = 1 , m2 = 1 , and

in4 = 1. The model constants which seemed to have the greatest influence on model re-
sults and which would have been most affected by including the additional process of

entrainment shear production were in3 and p3. For these reasom, the following approach

was taken to tune the model for this study.

First, a four year period from 1966 to 1969 was selected to represent a series of
well-observed years at Ocean Station Papa, and an extensive series of 360 day simu-

lations was conducted for each year with eacii version of the model. Every run was ini-
tialized with the nearest archived temperature profile corresponding to January 1 for
each year. The only differences between each simulation were the values selected for

mn3 and p3.

Next a 2-D array of rms error was formed for each of the two model versions as

a function of the independent variables, in3 and p, As these arrays were computed and
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plotted, a minimum rms error was sought for each year along with its coiresponding
values ofrn 3 and p,. Although some inter-annual variability existed in the best values for

these two constants, the overall pattern of the array fields of rins error constructed for
a given version of the model maintained a consistent pattern in the four years investi-
gated. For the version without entrainment the optimal values for in, and p3 were found
to be in the vicinity of two to four. The results with the version with entrainment shear

production suggested that p3 should have a value of approximately one to three and ni,
should be about equal to one.

1 laving found that the best values of the model constants varied from year to year,
it was decided to tune the model to achieve optimal results for a singic repiesentative
year. The year 1966 was chosen as the base year, since the array fields generated by both
versions of the model for that year appeared closest to rcprcscnting the results obtained
for the four years examinql. Using data from 1966 each version of the model was re-
peatedly integrated over the year to provide optimum values of the constants to an ac-
curacy of the nearest one hundredth. This approach led to the following values for the

base year:

* Model version without entrainment shear production: p3 =2.56 and i3 = 2.98

* Model version with entrainment shear production: p3 = 1.44 and in3 = 0.90

It is noted that since the two versions of the model are each attempting to represent
higher order processes with a different set of physical processes, the optimal values for
the model constants should differ. Additionally, the version with entrainment shear
production is more sensitive to the values selected for these model constants. This sen-

sitivity is illustrated by the array fields seen in Figure 3 on page 20. The greater sensi-
tivity of the newer version of the model may suggest that it is more realistically

representing the dynamics of the upper ocean.

Inter-annual variability causes the minima shown in Figure 3 to shift, particularly
along the axis representing values for in3. Observations taken from 1966 through 1909

show that the minima migrate toward lower values of m3 when Ocean Station Papa da'a
contains SST values which are higher than those for 1966. As shown by the solid curve

in Fig. 2, wind shear provides the dominant contribution to the TKE budget, so attempts
to match observed SST values with the model inevitably involved adjusting the
parameterization of the wind forcing term. This was accomplished by changing the
magnitude of in. The combination of this modeled feature (which was observed in both
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versions) and the increased sensitivity of the newer version to values of 171, adversely af-

fects efforts to find universal values fof the model constants. llowever, for the purposes

of this study, the inter-annual variability is not an obstacle to examining the significance

of entrainnent shear production.

1
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Figure 3. Error arrays: Plots of rms errors between observed and model pre-

dicted SSTr using data from the year 1966.
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IV. RESULTS

A. OVERVIEW
Since the model had been tuned to optimize annual simulations of SST at Ocean

Station Papa in 1966, this presentation of results will highlight SST simulations during

that particular year. Model SST performance against data from other years at the sta-

tion will be discussed briefly, as will simulations of the depth of the mixed layer. These
will be followed by introducing the improved vertical representation of the upper oceanic

temperature profile that is provided by adding the treatment of entrainment shear pro-

duction in a finite zone. Finally, results will be presented on the significance of

entrainment shear production in mid-year simulations of the mixed layer in mid-

latitudes.

B. SST SIMULATIONS

The earlier studies by Martin (1985) and Gaspar (1988) showed that annual simu-

lations of SST by bulk mixed layer models tend to demonstrate two intrinsic features.

The first of these features was pointed out by Martin who noted that these models tend
to yield less variability in simulations of SST than is observed in the data on the synoptic

time scale during the fall and winter. In addition, he noted that these models yield more

variability than is observed in the data on the synoptic time scale during the spring and

summer. The second feature was discussed by Gaspar who noted that these models tend

to over-estimate SST values (while under-predicting h) in the summer and to under-

estimate SST values (while over-predicting h) in the autumn. Gaspar observed that ad-

justing the model parameters to correct the SST errors for one season increased the

errors in the other.

Having tuned the NPS model to reduce annual rms errors in the estimates of SST

during 1966, the "optimal" results for that particular year were first examined in light of

the features noted in the studies by Gaspar and Martin. On the annual time scale results

from the two versions appeared almost identical, and the principal features in the fol-

lowing discussion apply to both versions except where noted otherwise. Hereafter, the

version of the model that includes the additional process of entrainment will be referred

to as the "enhanced version".

The results of the 1966 simulation of SST by the enhanced version are presented in

Figure 4 on page 25. The behavior noted earlier by Martin is evident, although the pe-
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riods studied here are not exactly coincident with those of Martin. The tendency of the

model to demonstrate less synoptic-scale variability in SST values than is recorded in the

observations is shown in Figure 4 to occur from January till late April and then again
after late September. The opposite tendency is seen in the warmer months from late

April until late September. In Figure 4 two prominent examples of these two tendencies

are shown by the different behaviors of the two curves on January 22 and on June 21.

The tendency of the model to exhibit less synoptic-scale variability in the cooler

months appears to be associated with the relatively larger depths of the principal (or
seasonal) thermocline. With deep mixed layers it is difficult, using only heat and mo-

mentum fluxes, to adequately simulate synoptic-scale variability in an inhomogeneous
upper ocean. Perhaps other factors (such as advection or upwelling) that contribute to

the heat content of the upper ocean provide an increased relative contribution when the

mixed layer depth is relatively larger. Since the model has been tuned to best represent

the annual evolution of SST, it attempts to compensate for these missing physical

processes by over emphasizing the roles played by the fluxes of heat and momentum.

This over-emphasis would explain the model behavior observed in the warmer months

when the principal thermocline has shoaled, and the uniform thermal characteristics of

the mixed layer are more easily influenced by surface heating and wind-mixing. This

intrinsic feature of the NPS model was observed in simulations against data from other

years at Ocean Station Papa, and it could not be removed by adjusting the model con-

stants.

Gaspar's observation that bulk mixed layer models over-estimate SST in the summer
and under-estimate its value in the autumn was not demonstrated by the NPS model

with the constants tuned optimally for 1966. As Figure 4 shows, the model slightly

under-predicted the observed SST throughout the year, except for about a three week

period in the late autumn. To further examine the general tendency of the model to
under-estimate SST in an annual simulation, additional runs were performed with two

significant variaiions. First, to determine if this tendency was unique to 1966, the model

was tested against data from nine other years using the same model constants. Addi-
tionally, to see if the tendency was a by-product of tuning the model constants to reduce

rms errors in SSTf values, tests were made against 1966 data with significant variations

in the values assigned to in, and p3.

In testing the NPS model against data from other years, an error analysis was con-

ducted for each 360 day simulation. These errors were compiled to provide a general

evaluation of the model's performance against data extending from 1960 to 1969. Errors
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for the annual simulations are provided in Table 1, and it is seen that with the optimal

model constants for 1966, the model always tended to under-estimate SST. Also indi-

cated in the table is a significant amount of inter-annual variability, with rms errors

ranging from 0.29 0 to 1.24 C and mean errors recorded between -0.12 C and -1.7 C.

To better understand the diversity shown in these results, the last five years of this period

were examined in detail and will provide the basis used in the following general de-

scription of annual simulations of SST with the NPS model.

From January to April, SST prediction tended to be quite accurate, with errors sel-

dom outside of + 0.5 C and -0.5 C. From May through October, the model always

tended to under-estimate SST with errors varying greatly from year to year. The under-

prediction of SST in the late summer was typically -1.0 C, but for 1965 these errors fre-

quently surpassed -3.0 C. The model tendency during this period was the principal

reason for the mean errors recorded in Table 1, and especially for the unacceptably large

value shown for 1965. The last two months of the year returned errors ranging from

about -1.6 C to + 1.4 C, and no significant trend was noted except that the performance

near the end of the year was relatcd to how well the model had predicted SST values

through the late summer period. Thus, the tendency of the model to under-estimate ssT
values as shown in Figure 4 is correct only in that this tendency is confined to the

warmest months of the year. Also the magnitude of error illustrated in Figure 4 is not

necessarily representative of other years.

Table 1. ANNUAL SST ERRORS.

Year Earlier model Enhanced model

mean (C) rms (P) mean (C) rms (0)

1960 -1.48 1.24 -1.54 1.24

1961 -0.69 0.87 -0.83 0.96

1962 -0.13 0.59 -0.26 0.51

1963 -0.45 0.66 -0.56 0.76

1964 -1.05 0.88 -1.23 0.95

1965 -1.53 0.99 -1.70 1.07
1966 -0.37 0.33 -0.46 0.29

1967 -0.12 0.77 -0.17 0.75
1968 -0.42 0.67 -0.45 0.56

1969 -0.71 0.S6 -0.78 0.89
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The next series of runs conducted with the model were performed to examine how

tuning the model constants might affect the model's tendency to under-estimate SST

thro:ighout most of 1966. Especially desirable was evidence that the tendency could be

reduced in the warmest months without adversely affecting model performance in the

other times of the year. It was found that either increasing the value ofp3 or decreasing

the value of n3 eliminated the tendency of the model to under-estimate SST throughout

the year. Increasing the value ofp3 represented an increase in the dissipation rate of TKE

in the mixed layer, and reducing the value of m3 represented a decrease in the generation

of TKE by wind-forcing. Both of these changes resulted in less mean TKE in the mixed

layer, permitting the SST predictions to reach higher values. Although for future studies

some combination of changes to both of these model constants would be best, it was

noted that of the two, increasing the value of'p, had less of an adverse effect on simu-

lations of the cooler periods of the year. A rough estimate from these runs is that it

should be assigned a 50 per cent larger value than that assigned to each version of the

model in this study.

A noteworthy feature shown in Figure 4 is the abnormally large SST observation

recorded on January 22. The value shown is about 7.7 C and was obtained by bucket

measurement. This value did not appear in the mechanical BT data which consistently

showed near surface temperatures of less than 6.0 C from January 21 to January 23.

Although the larger value recorded in the bucket data is considered spurious, no attempt
was made to remove it or any other data from either the simulations or the error ana-

lyses.

C. UPPER OCEAN THERMAL STRUCTURE SIMULATION

This aspect of model results will highlight some of the general tendencies exhibited
in upper ocean simulations with the two versions of the NPS model. As was mentioned

in Chapter 3, model initialization could play a significant role in the outcome of a given
simulation. Initialization with BT profiles from either of two successive dates could

greatly alter the results. The adverse factors contributing to an erroneous BT are nu-
merous, including navigational error of platforms, calibration of BT's, precision of tem-
perature recordings ( 0. 1 C) , and a vertical resolution of only five meters. These same

factors contribute adversely to model verification on any given date throughout a simu-

lation. Although these fact'ors make it difficult to assess errors in the model, they have

the same effect on resultz from both versions. A brief description of tendencies common
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to both versions will be presented, focusing on some of these problems. This will be

followed by a presentation of differences exhibited between the two versions of the

model, highlighting their skill during the warmer months and their physical represen-

tation of the upper ocean.

The ability of the NPS model to simulate the annual evolution of the thermocline

is presented in Figures 5 and 6. The asterisks in each figure depict data points from BT

data archived :t five meter intervals, while the solid and dotted lines represent the tem-

perature profiles predicted by the enhanced and earlier versions of the model, respec-

tively. As illustrated in Figure 5 on page 28, a problem occurred in the initialization of

the model. The 21 January profile shows an observed mixed layer isotherm of 5.8 C.

Both versions showed a -0.4 C error in the temperature of the layer three weeks after

initialization. This represents a very large amount of heat, since the layer depth was

approximately 135 meters. Two days later, the 5.8 C isotherm extended only to a depth

of 100 meters: the next 35 meters had a lower value of 5.7 C. On 30 January, one week

later, the 5.9 C isotherm was found to exist at these depths, and to further complicate

matters, the temperature at the surface had decreased to 5.7 C. The SST for 21 and 23

January was 5.8 C, which was the value of the 30 January" isotherm between 15 and 30

meters. This evolution of tmperature structure in the upper ocean cannot be explained

by one-dimensional processes. Physically speaking, this sequence of BT profiles would

imply heating from the lower ocean, which is not possible. This phenomenon is best

explained by one of three possibilities: ship movement, advection, or observational er-

ror. In other words, either these BT data were collected from different water masses,

or temperature variations of ± 0.1 C should be considered insignificant.

The problems associated with the temperature profiles observed in late January had

disappeared by late March, as shown by the 26 March profiles in Figure 5. It is noted

that the estimated depth of the mixed layer on 26 March is the depth at which the model

estimate of temperature is approximately 0.6 C (for the earlier version) to 0.7 C (for the

enhanced version) less than the simulated SST. Also the model temperature profiles,

including the depth of the mixed layer, are in good agreement with the observed BT data

at that time of year. This is fortuitous, since it lends more credibility to a discussion of

model performance during the warm summer months than would have been possible

after the initialization problems observed in January.

As seen in Figures 5 and 6. the general tendency of the model was to under-estimate

the depth of the mixed layer throughout the sumnmer months and into the fall. In view

of the tendencies observed in the previous discussion of model prediction of SST, this
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tendency to under-estimate the di:pth of the layer is significant for two reasons. First,
since the modtel tended to under-estimate SST throughout the warr ier months, this ad-

ditional tendency implies either an inaccurate heat flux at the surface or an inaccurate

amount of mixing in the upper ocean. This tendency was also demonstrated by the

one-dimensional models examined by Gaspar (1988), and further research will be re-

quired to select the correct reason. The other significant aspect of the model's tendency
to undcr-estimate layer depth during the warmer months is the synoptic-scalc variability

problem noted in the SST simulations. A smaller layer, as predicted by the model in the
warmer months, would be more responsive to synoptic-scale forcing. Since the model

exhibited more synoptic-scale variability in the summer months than was observed for

SST values, the parameterization of momentum and heat forcing may not be as poor

as was suggested by the results in those simulations. The thinner layers predicted by the

model should be more responsive to synoptic-scale forcing than the deeper layers indi-
cated by observations. Thus the problems observed for SST estimations are probably

related to a long-term error or bias in the net heat flux imposed at the surface. This is

not a model problem but a boundary condition problem.

An interesting feature observed in the simulated upper ocean thermal structure was

the evolution of a thermocline at about 60 meters depth. As Figure 6 shows, this feature

represented a mean temperature change of approximately 1.2 C, and corresponded to

significant mixing in the upper ocean sometime after 26 March. On that date, as seen

in Figure 5, the SST was 5.9 C and the mean temperature of the layer was 5.8 C.

Meteorological data shows that a large storm passed by Station Papa between 12 and

15 May, and as Figure 4 shows, the model estimated SST fcr those dates was about 6.1

C on May 12 and 5.8 C on May 15. Thus the thermocline feature was created by the

model in response to wind forcing during that storm, and it remained in the temperature

profile until its removal by mixing during the fall deepening. This identical feature did

not exist in observed BT profiles examined in this study. Perhaps the gradient in the
observed data at about 70 meters depth in the 27 May profile corresponds to the same

storm. It is noted that the observed SST in the isotherm at the base of the gradien is
6.3 C which corresponds to the observed SST value on 15 May. The observed gradient

at about 70 meters persisted with some variability (perhaps due to instrument precision

or ship movement). However, through the summer months, unlike the model

thermocline at 55 meters, the observed gradient exhibited much less intensity (less
AT/Az) by September. This suggests that diffusion is greater in the upper ocean than it

is in the model. Further research is needed to understand how to improve
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parameterization of heat conduction and ambient diffusion below the surface mixed

layer and entrainment zone.

D. EXAMINING ENTRAINMENT SHEAR PRODUCTION

The annual simulations of SST by the two versions of the NPS model did not differ
significantly, since each version had been tuned to optimally reproduce the observed ss'r
values. However, there were notable differences in the temperature profiles yielded by

the two versions as shown in Figures 5 and 6. Although these differences might be at-

tributed to entrainment shear production, it must be pointed out that to some extent,

differences had been introduced by using different values of P3 and m3 for the two ver-

sions. For these reasons, two approaches were adopted to evaluate the significance of
entrainment shear production. The first approach was to observe temperature profiles
yielded by the two versions after they had been modified to remove the biases created

by independently tuning them to reduce SST errors. This was easily accomplished by

assigning a value of 2.0 to both m3 and p3 for the two versions. The second approach

involved computing a time series of the differences between SST values yielded by the
two versions and examining these differences for a relationship to features observed in

a time series of the atmospheric forcing.
The response analysis conducted earlier suggested that entrainment shear pro-

duction should be most significant during the warmer months when the mixed layer is

shallow. It will now be shown that the results obtained by equalizing the model con-
stants for the two versions suggest that this tendency exists, but perhaps is only mani-

fested in features very near the surface, especially in estimates of SST.
The temperature profiles hindcasted by the two versions of the model on 21 January

were nearly identical. However, as shown in Figure 7 on page 32, the two versions be-

gan to yield slightly different results by late March. By late July the results were

measureably different. The summer profile shows that significant differences occurred

as a conseqence of each development of a major thermocline. The enhanced version

created the mid-May-storm thermocline at a depth of about 68 meters, whereas the
version without entrainment shear production established the same thermocline at about

52 meters. Furthermore, the temperature at the top of this steep gradient was about 3.5
C cooler in the enhanced version's results, corresponding to the increased mixing which

had mixed the layer to a greater depth. This phenomenon was evidently repeated for
each major storm period at the station, as evidenced by the differences in the two other

prominent thermoclines shown for 24 July. One major thermocline is shown at about
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32 meters in the enhanced version, contrasted with a depth of about 22 meters in the

earlier version. The other major thermocline is shown near the surface for each version.

It is interesting to note that between the two versions, the smaller tbe difference in the

depths shown for a particular thermocline, the larger the difference in the total temper-
ature change (A7). Thus the two versions returned only a 0.4 C difference in SST after
the mid.May storm, but show a 3.6 C diffierence on 24 July. These results are consistent,

since they imply that the treatment of the total heat budget in the upper ocean by the
two versions is quantitatively the same. The differences could thus be attributed to the

increased mixing in the enhanced model provided by the additional process of
entrainment shear production. However, since differences in the results began to appear

as early as March, it remains to be demonstrated that the process is more significant

during the summer months. To this point, the surmmer months show only a more pro-

nounced difference in SST between the two versions,

The second approach to examining the significance of entrainment shear production
involved comparing the results of the two optimally tuned versions in view of atmo-

spheric forcing. Two aspects of atmospheric forcing were studied to gain an under-
standing of the roles of the fluxes at the ocean surfhce in entrainment shear production.

These aspects were wind stress (r) and net downward heat flux (Qo), plots of which are

provided in Figures 8 and 9, respectively. These quantities were calculated using stand-
ard bulk aerodynamic formulae with a non-dimensional wind drag coefficient (C,) of

1.3 x 103. The employment of these formulae at Station Papa was well described by

Raney (1977), and the values assigned to constants used in the formulae were adopted

from that study. To compare the results of the two model versions, three-hourly outputs

of SST were used to compute values of the difference in SST provided by the two model

versions. A time series plot of these differences is provided in Figure 10 where each
three-hourly data point represents a particular SST value returned by the enhanced ver-
sion minus the corresponding value computed by the earlier version. The plot in Figure

10 has been partitioned into eight periods to facilitate a discussion relative to informa-

tion provided by the flux plots shown in Figures 8 and 9.

The first period (I) shown in the SST difference plot extended from initialization

until a rapid succession of moderate wind-forcing events in the early summer beginning

on about day 172. During this period the SST differences between the two versions were

insignificant, although some variations began to appeer associated with spring storms.

The second period (IT) was characterized by the establishment of a highly variable dif-

ference between the two versions between days 172 and 232. During period 11 the mean
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difference between the two versions was about -0.25 C. On about day 232 a significant

shift occurred in the mean difference in SST values, marking the onset of period Il, This

period lasted until day 259 and was characterized by warmer SST results from the en-

hanced version with a mean difference of about + 0.08 C. Period I V began with a sharp

increase in the SST difference to almost +0.55 C on day 260, followed by a nearly

monotonic decrease to about +0.15 C on day 269. In the following period (J') this dif-

ference was maintained with very little variability. Period I7 commenced on about day

280 and showed another almost monotonic decrease in the SST difference that extended

to about day 290. This was followed by two other periods (VII and VIII) that each

showed a gradual increase in the SST difference from about -0.2 C to about -0.3 C.

These last two periods were separated by a significant event on day 332 that caused the

difference to drop by just over 0.1 C.

Before relating the SST differences shown in Figure 10 to the atmospheric forcing

data, a few general features shown in the figure should be discussed along with a review

of the conditions applicable to a hypothesis regarding the significance of entrainment

shear production. In general. it is noted that the variability in SST differences was most

prominent during period III and least significant during the first half of period I and

throughout periods I'Il and f7II. These periods correspond to a deep principal

thermocline and show that if entrainment shear production was making a contribution

to the TKE budget, it was not manifested in a change in SST. I lowever, low variability

in SST differences was also exhibited during period V, a time when there was a shallow

principal thermocline. The combination of these features suggests that the existence of

a shallow principal thermocline is a necessary, but not sufficient, condition for

entrainment shear production to become significant, at least near the sea surface., Ad-

ditionally, the results from the investigation of the upper oceanic thermal structure sua-

gested that differences due to entrainment shear production occurred as a consequence

of significant mixing events, as was illustrated in Figure 7. Furthermore, the results fain

the response a.aalysis conducted earlier suggested that the process should affect the up-

per ocean most, not only when these conditions are met, but also only when the ocean

is at rest irmmediately prior to a wind-forcing event. In other words, the results estab-

lished thus far suggest that entrainment shear production should be most significant

under the following coniitions:

e A relatively shallow principal thermocline.

* A shallow mixed layer. or none at all.
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* Initially, a period of weak or absent wind-forcing.
* A sudden, rapid increase in wind-forcing sufficient enough to deepen or create a

mixed-layer.

To physically isolate these conditions at Station Papa, the data were searched for

times when the following features were exhibited:

o A shallow principal thermocline.

* A recent period of large downward net heat fluxes.

* A recent period of weak wind-forcing.

* A sudden, rapid increase in wind-forcing, particularly one that is not significantly
prolonged.

The persistence restriction ("not significantly prolonged") was added to the wind-forcing

condition as an attempt to isolate a period from conditions created by a difference in the

parameterization of wind shear production between the two model versions. The value

assigned to the m3 constant in the earlier version was over three times larger (2.98 versus

0.90). Thus sustained wind conditions would prevent isolation of the effect of

entrainment shear production.

Somewhat arbitrarily, these conditions identified for investigating entrainment shear

production were assigned threshold criteria. By no means were these criteria considered

universal, They were merely introduced to provide a convenient means of analyzing the

data., The first four of these threshold criteria were used to examine the time series plots

in Figures 8 and 9 and are described as follows.

The first criterion, shallow principal thermocline, was defined to be at a depth above

-50 meters, as estimated by the enhanced model. The next criterion, a period of large

downward heat flux, was defined as either a 24 hour period during which the peak net

downward heat flux surpassed 400 W/m2 or a 48 hour period during which it reached 350

Wm for two consecutive diurnal cycles. Since z has been defined as positive upward,

these values are negative in Figure 9. The third criterion, a a period of weak wind-

forcing, was defined as a period of 24 hours or longer having r values less than 0.02

dynes/cn 2 . This corresponds to a wind speed of less than I mls at a heigltt of 10 meters.

The fourth criterion, a wind-forcing event likely to provide significant mixing by

entrainment shear production, but isolated from sustained wind-forced events was de-

fined as one in which r values rapidly rose to greater than 1.7 dynes/cm2 , but were not

sustained above that value for greater than 24 hours. This criterion was designed to
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provide sufficient momentum for entrainment shear production, while avoiding the bias

created by the larger m3 term used in the earlier model.

Having established the previous four criteria for investigating the time series shown

in Figures 8 and 9 for conditions likely to provide significant mixing by entrainment

shear production, a final threshold criterion was established. This fifth criterion was

used to determine if a significant contribution to the TKE budget had been made by

entrainment shear production. It was defined as a greater than .2 C negative SST change

in the difference in SST estimates between the two model versions occurring within a

time period of 18 hours (corresponding to about one inertial period). To illustrate this

definition, the reader's attention is invited to Figure 10. In this figure, the difference in

SST values estimated by the two versions made five negative deviations that surpassed

this threshold criterion. These each occurred within two day periods corresponding to

days 172 to 173, 186 to 187, 194 to 195, 204 to 205, and 232 to 233. Other less prominent

negative de~iations are shown in this time series, and each of these were examined in

view of the principal thermocline depth and forcing criteria discussed earlier.

The results of this examination are presented in Table 2, where the five threshold

criteria are represented by SHPT (shallow principal thermocline), Q- I (recent warming),

TAU-I (initially calm winds), TAU-2 (proper wind-forcing), and SESP (significant

entrainment shear production), respectively. The appearance of a check mark (s,," in

any of the criteria columns in Table 2 indicates that the threshold criteria were met, and

the final column in Table 2 shows verification of the hypothesis. It should be noted that

the criteria established for this hypothesis are ad hoc. However, the qualitative results

illustrated in Table 2 tend to verify the hypothesis.

The only instance found where the hypothesis was not verified in accordance with

the criteria was during a period in early July, days 186 to 187 in Table 2. Although the

peak net downward heat flux was never very large during the two days prior to this pe-
riod, it reached a very large value on day 187, and a thin layer associated with the diurnal

cycle may have formed prior to increased wind-forcing. Also, it is noted from Figure 8

that the winds had been weak for several days immediately prior to this event. These

conditions also would have been favorable for a shallow mixed layer to have existed on

day 187.

These results suggest that entrainment shear production can indeed play a signif-

icant role in the TKE budget, but only when the appropriate conditions have been sat-

isfied. Furthermore, these conditions are not limited to hypothetical numerical
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experiments, but may frequently occur in any region of variable wind forcing and shal-

low mixed layers.
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Table 2. EFFECT or ENTRAINMENT SHEAR PRODUCTION: Symbols and

abbreviations are explained in the text.

Days SiPT TAU-1 TAU-2 Q-1 SESI) Hypoth,

128-129 0 __- -vF __" 0 Nir

137-138 0 _f 0,,,,
172-173 ,/, - , v

180-181 0 0 0 0
186-187

188-189 0 _ /" N' 0 N

194-195 v N -, N N N

200-201 -, 0 ) 0 0 N,

204-205 N N/ N' , N' N

207-208 N 0 N' N' _____

214-215 v0 0 _ ; _,

217-219 - 0 N; _ .' 0 N/-

Days STIPT TAU-1 TAU-2 Q-1 SESP tlypoth.

222-223 N N' N 0 0 _ -
22S-229 , N 0 0 N'

232-233NN"

244-245 ,; N N' 0 O

248-250 0 O N' 0 ,

253-254 ' 0 0
255-258 1 0 0 0 0

262-263 N' 0 0
264-265 0 N N _

267-268 N' 0' N" 0 0 ,

285-286 0 N N ",

289-290 0 0 0 0 N

Two other sets of interesting features appear in the plot of SS1' differences shown

in Figure 10. These are the significant positive and negative shifts in the SST differences

occurring at various times throughout the year. 1 he positive shifts occurred near the

end of period II on day 226. in the beginning of period IV on day 259, and between pe-
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riods VII and VIII on day 331., Examination of the wind-forcing data in Figure 8 shows

that each of these positive shifts was associated with either a very strong wind-forcing

event or persistent, strong wind forcing. Either of these conditions caused significant

wind shear production. This tended to bias the mixing diflercnces between the two model

versions, with larger TKE (and lower SST) estimates returned by the earlier version due

to the higher value assigned to its wind-forcing parameter, in, . Also, these events were

not immediately preceded by a sufficient lull to permit entrainment shear production to

significantly alter the SST. It should be noted, however, that these conditions had less

effect when the layer deepened, as illustated by the storm on day 291. Very intense

forcing was required to accomplish the shift on day 332.

The significant negative shifts are shown in Figure 10 to have occurred on three

occasions in 1966. The first occurred during period II between days 172 and 177. The

second and third shifts occurred during periods IV and 1I. Each of these periods in-

cludes a succession of small entrainment shear production events. These results suggest

that the contribution of entrainment shear production to the TKE budget is not only

determined by the intensity of a given entrainment shear production event, but also

upon the number of events.

Upon examining the comparisons in this study (one with optimally tuned versions

of the model and one with identical model constants for the two versions). one final re-

sult was obtained. This was an improved vertical representation of the physical prop-

erties in the upper ocean by inclusion of entrainment shear production. A typical

temperature profile is provided in Figure 11 showing the computed and observed tern-

perature profiles for May 27., As seen in the figure, the enhanced version shows a finite

entrainment zone at the base of the layer that reduces the temperature gradient in com-

parison with that predicted by the earlier version of the model and better resembles the

observed profile.
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Figure 10. Difference in SST: Values represent estimates by enhanced version

iifinus estimates by earlier version.
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V. SUMMARY AND REMARKS

This investigation has introduced and tested the most recent addition to the NPS
mixed layer model, the inclusion of entrainment shear production of TKE in a finite
entrainment zone. The study has used the NPS model to investigate the additional
process in three ways. The first investigation was whether or not the process would
improve annual simulations of SST. The answer to this question is not clear. In addi-
tion to difficulties such as lack of data precision and the inability to estimate the possible
effects of advection, too little is known about appropriate values for the model constants
used to parameterize physical processes. Tuning the model to optimize perfbrmance on
an annual time scale may inadvertently over-estimate the importance of any one process
in order to compensate for errors in another. Since it was demonstrated that the model
constants used in this study did not provide universally good results in tests with data
from periods other than 1966, an optimal set of model constants has yet to be found.
Perhaps using a model that has been tuned to better represent the structure and evolu-
tion of the thermocline, rather than simply reduce SST error, would show that
entrainment shear production provides a significant contribution to annual simulations.
Additionally, it was noted that the apparent insignificance of entrainment shear pro-
duction for annual simulations in the mid-latitudes is not indicative of its probable im-
portance in operational forecasting for much shorter periods. Evidence presented here
and in other studies suggests that this process can provide a significant contribution to
the dynamics of the upper ocean on shorter time scales and, or at lower latitudes where
inertial periods are longer.

The second component of the analysis in this study was to determine the condi-
tions for which entrainment shear production should provide the greatest contribution
to the TKE of t'e upper ocean. The results from this analysis show that the process can
be expected to be significant in highly stratified oceanic regions subject to variable wind
forcing, and the process is found to be particularly significant on time-scales shorter than
one inertial period. However, no conclusions could be reached regarding the role of
entrainment shear production for deep mixed layers. Additionally, this particular com-
ponent of the analysis primarily used two model versions which were assigned different
parameterizations for wind shear production. No means was available to isolate the
contribution of wind shear production for time periods of longer than about 12 hours,
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thus it remains to be determined if entrainment shear production plays a significant role

in an environment of sustained wind-mixing. Only the theoretical results from this study

have suggested that the process becomes insignificant after the first inertial period fol-

lowing the initiation of a given wind-forcing event. However, this analysis has extended

the theoretical significance of the process and provided for the first time evidence of the

theoretical conditions set forth by de Szoeke and Rhines (1976).

Additionally, since this investigation focused on the effects of entrainment shear

production toward improving model skill in estimating SST values, further research is

suggested for determining its effect on mixed-layer simulations. An investigation of that

aspect of the contribution of entrainment shear production could be launched with his-

torical data collected at Station Papa, but it is not recommended due to the poor vertical

and marginally acceptable temporal resolution of the data.,

The third aspect of this investigation was improvement in the model representation

of the upper ocean thermal structure provided by the additional process of entrainment

shear production. The additional process, in conjunction with the finite entrainment

zone, was shown to provide a representation that more closely resembles observed

thermal features., This improvement may be practically important for Navy" operational

purposes, since it provides temperature profiles with more realistic gradients at the base

of the mixed layer, rather than discontinuities. Temperature gradients in the ocean play

a significant role in acoustic propagation in situations tactically significant to the Navy.

Several additional recommendations are made:

* Acquiring better estimates or parameterizations of salinity, heat, and momentum
fluxes at the surface boundar'.,

* Conducting studies which account for the el'hcts of advection.

* Studying the effects of planetary rotation on entrainment shear production by
conducting research at several latitudes, and particularly in tropical regions.

4 Performing similar investigations with data collected at time intervals of io longer
than five per cent of an inertial period and with the best feasible vertical resolution
using modern profiling instruments.

* Concentrating research effbrts to identify the effects of entrainment shear pro-
duction on time scales applicable to naval operations, weather predictir,',, and
commercial fishing interests.

* Incorporating into three-dimensional models the treatment of entrainment shear
production in a finite entrainment zone to improve the representation of upper
oceanic thermal characteristics over broad regions.
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The results of this research have shown that entrainment shear production can

play a significant role in the dynamics of the upper ocean. Additionally, thc NI'S model

appears to benefit from the additional process of entrainment shear production treated

in a finite entrainment zone. After more extensive testing and tuning, the model will be

shown to have improved significantly the understanding of mixed layer dynamics.
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